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For a wide class of systems with collisions we propose an approximate method 
for computing the slipping states, characterized by the same degree of com- 
pleteness and labor-consumption as the known methods for computing motions 

of simple types. For the case when the relative acceleration of the colliding 

bodies varies by a linear law on the final segment of the slipping state. we have 

obtained an analytic expression for the state’s duration factor as a function of 

the velocity recovery factor under impact. 
Examples of the calculation of concrete models are considered. A compa- 

rison with results obtained by exact methods shows that the error does not ex- 

ceed a few percents even for the first approximation. By a slipping state in a 
system with collisions we mean a motion accompanied on a finite time inter- 
val by an infinite sequence of instantaneous shock interactions between two 
fixed elements of the system. For a wide class of systems being considered the 
problem has been solved in [l - 31 of determining in phase space the exact 
boundaries of the slipping state regions and of delineating the existence regions 
of periodic motions with a slipping state segment in parameter space. However, 
it is not advisable to recommend the use of the iterative procedure used in 
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those papers as a practical calculation method because of the considerahk 

consumption of labor, The approximate method of analyzing slIpping stafc\: 
was suggested in [4]. But, as was noted in [5. 61, when it was applied to con 

Crete models, significant segments of the functions being computed could not 
be obtained successfully. 

In the present paper we propose an approximate method for calculating the 

slipping state regions in phase space and the existence regions of periodic mo- 

tions with a slipping state segment in parameter space, 

The method is based on an analysis of point transformations of the Cork 
interaction hyperplane into itself and on the following two idealizations: 

a) a certain new characteristic, which we introduce into consideration, namely, 

the duration factor of the slipping state, which depends only on tile physical 

parameters of the system ; b) the slipping state starting at some instant can also 

be treated as the motion of colliding masses with asuperimposed kinernatlc con- 
straint after their absolutely inelastic interaction [l]. In such an approach the 

approximateness of the method is connected with the approximateness of the 
idealizations adopted. However, the possibility remains of an unbounded refin- 

ement of the dynamic model being analyzed at the expense of choice of the 

instant taken as the start of the slipping state. 

1. Equrtlon of thr lllpping Itate rrglon In phrlr rprer. Let us 
consider a dynamic system whose dimensionless equations of motion in the intervals 

between collisions can be represented in the form 
. . 

XI - F, y- F,,. px,” -= F, - F,, 

2, =: pi (i -= 3,/t 1..., n). X2 - Xl > 0 

(I.11 

Here X, and 52 denote tile displacements of the colliding masses, where the origin of 

reference is chosen so that the impact takes place when the equality x2 = X1 is ful- 
filled ; p is the ratio of the colliding masses, while F12 is the interaction force between 

them, depending only on the difference X2 - Xl- We assume that the forces Fi (i y= 

1,2, . . . . n) do not depend upon the quantities t,’ and x2’ and are analytic functions 

of the remaining phase coordinates x1, . . . . X,, Xs’, . . . . x”‘, t. Thus, the right- 

hand sides of system (1.1) retain continuity at the collision instants. 

We make a change of two variables by the formulas y = 5s - X1, ?/’ = X2’- 51’. 

Then the equations of motion (1.1) take the form 

&l/” == F, - uF1 - (1 + p) F,,, (1 + P) z1” = F1 + F, - py” 

xi *’ = Fi (i = 3, 4,. . n), ?I>0 II .2) 

By idealizing the impact as being instantaneous with a velocity recovery factor 0 < 

Ii< 1, we have the known relations between the post-collision y’+, xl’+ and the 

pre-allision y’-, x1’- values of the velocities y’, zl’ in the form 

(1.3) 

in the phase space .c,, y, dg, . . . . x,,, z,‘, y’, x8’, . . . .c,,‘, t of the system being ana- 

lyzed tiie shock interactions take place on a hyperplane 11 described by the relation 
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Y = 0. The point transformation M, = T (MO) , generated by Eqs. (1.2) (1.3) maps 
the surface fl into itself. The slipping state region n, is the part of n contained bet- 

ween the manifold y’ r= 0 and some boundary rS. The latter separates the system’s 

states which are the initial ones for subsequent slipping state from the initial conditions 

for which a slipping state does not occur during the motion. It is necessary to note that 

knowledge of only a segment rS’ E rS in an arbitrarily small neighborhood of the 

exit manifold ;l!f, from region fl, permits us to extend, by a consideration of the inverse 

transformation T-’ (r,‘) , the known part of the boundary rS from rS’ up to r,“, 

rsl” , . . . p, 31. Here each time only the number of the collision which can be taken 

as the initial one for a subsequent slipping state, is displaced. Therefore, without loss of 
generality, it is sufficient to delineate the most important part of r,, abutting manifold 

ill,. 
From the analysis of the point transformation M, = T (hf,,) it is always possible 

to obtain (even if by a numerical method) f7] a certain relation 

cp (To1 510. 0, x30, *.., X,0, 5rtl’, Y,‘, %0’, **a, Go’t 10) = 0 (1.4) 

connecting the duration ‘r. = tr - to between the initial and the subsequent collisi- 

ons with the coordinates of the initial point 

MO @IO, 0, 530, . . . . GO’ +I’, Yo’, 590’, **a, &lo’, to) 

The duration To is the smallest positive simple root of Eq. (1.4). The continuous depen- 

dence of r. on the coordinates of the initial point is violated when this quantity dege- 

nerates into a multiple root of Eq. (1.4). i.e. on some manifold r,,defined by the con- 

(l-5) 
The feature of the trajectories issuing from rr at the instant to is that at the instant 

to -k To they are only tangent to hyperplane 11. Therefore, the equations of ri can be 
obtained also as the inverse point transformation T-l of the manifold Y = 0, Y’ = 0. 

We introduce into consideration a certain new characteristic, We give the name dura- 
tion factor 8 of the slipping state to the ratio of the time interval ‘co to the total dura- 
tion h of the slipping state starting at the instant to and terminating at the instant t, 

on the exit manifold, i.e. 

We assume that the factor 0 does not depend on the phase coordinates and is charac- 

terized only by the system parameters. Then Eqs. (1.4) (1.6) permit us to define, for- 

mally, on the hyperplane n certain manifolds w, corresponding to specific values 
h = const. These manifolds form a one-parameter family located between the bound- 

ary y’ = 0 and the envelope (1.5) of family (1.4). It is obvious that with due regard 
to the assumptions we have accepted on the nature of factor 8, only those points of 

manifolds Wh have a physical meaning, which are simultaneously located on boundary 

rS. To single out these points we make use of a method. independent of the preceding 
considerations, for determining the duration h of the slipping state, 

We know that when system (1.2) and (1.3) moves in a slipping state, the phase tra- 
jectory corresponding to it, starting with some instant t o, is arbitrarily close to the phase 
trajectory of the idealized system with a superimposed kinematic constraint between 
the colliding masses [I]. We obtain the law of motion of this dynamic model from 
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relations (1.2). by replacing the first two of them by the equations of motion of the inter- 

acting masses in a kinematic constraint 

G(1) 5s Fz - PI;, - (1 + FL)Fl2 < 0, (1 ;- p) X1” - I;‘, -L F, (1.5) 

Xi” = Fi (i = $4,. . , n), y= 0 

We obtain the equations of the exit manifold A$, from the condition of termination of 

motion in a kinematic constraint 

Y =L: 0, y’ = 0, c(t) = 0, G’(t) > 0 (l.S\ 

Relations (1.7), (1.8) permit us to obtain, approximately from ait analysis ctf tile motion 

with the superimposed constraint, after an absolutely inelastic impact. trle dependence 

of the slipping state’s duration on the coordinates of the initial point of tile transforma- 

tion in a form analogous to expression (1.4), i, e, 

@((h, TqQ, .**t xno, x1*‘, **., ~,I3 + to) = 0 (1.9) 

The quantity h. is determined as the smallest positive root of Eq. (1.9). The one-para- 

meter family defined by relation (1.9) mnsists of manifolds V,, located on surface 

II ,each of which corresponds to a specific duration h. L-. co& of the motion of the 
colliding masses in a kinematic constraint. The system of Eqs. (1.4), (1.6), (1.9) impose 
an additional constraint on the coordinates of hyperplane n and, by the same token, 
define the desired boundary rs as the locus of the intersections of manifolds bv,, and 

Vh for various values of parameter h. Examples of such intersections are shown in Fig. 

8, Sect, 3. 

It should be noted that the delineation of the boundary of region TI, can be looked 
upon as a problem of obtaining sufficient conditions for the structural stabili.ty [coarse- 

ness ( l ) ] of the parameter space (81 of a system with collisions with respect to the re- 
placement of the real values of factor R by zero. If for f$ f 0 the system’s state at 

some instant t0 is characterized by a phase point M o cz II,, then the idealization of the 

subsequent behavior (the slipping state) as the motion of interacting masses with a super- 

imposed kinematic constraint is, in principle, permissible, The errors in such an ideali- 

zation can be made arbitrarily small at the expense of choosing lo . namely, “its starting 
instant”, since here the ~rres~nding phase trajectories are arbitrarily close, However, 

in case MO g 11, , the stated idealization is unjustified because the phase trajectories 

issuing from the point MU for a system with I< =#z u and a system with H =: 0. in gene- 

ral, do not come together unbo~dedly on a given finite interval, 
After the equations for boundary I‘, have been obtained, the study of periodic motions 

with a slipping state section reduces to the usual procedure of seeking the fixed points 
of the corresponding point transformations of surface u into itself and to the investiga- 
tion of their stability. The constraint ~\f,, FL n,, imposed on one of the fixed points 

A!, 1 is an additional requirement. By replacing this condition by the relationMoE rs, 
from the system for determining the coordinates of the fixed points we obtain the equa- 
tions qf the boundary c’, of the existence regions of the motions being considered in the 

space of the parameters of the dynamic system, 

0. Durrtfon factor of the aUpping #t&to under e llnrrt lrw of 

l ) Editor’s Note. See PMM Vol. 33, N%, 1969, page 948 (English version). 
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vrrirrlon of the rclrtivc rccelcrrtion of the colliding bodies. 
Let us show thar in a wide and, seemingly, most important class of dynamic systems with 

collisions the factor (9 is a comparatively simple function of the velocity recovery fac- 

tor I<. We consider the case when the relative acceleration y” (t) in a neighborhood 

It,,. I,, -: /l] of the instant f,, taken as the starting time of the slipping state, can be 
taken approximately as a linear time function of the form 

y” (t) :-- y” (L,) -; (t - t,)I 

Then, on the interval (tk, t~,+~) the law of variation of file relative distance 
be represented by Taylor’s formula 

y (t) = - Ry; (t - tk) + (t --))’ yk** + (t -tjt*)p y 

(yk’ = y’- (t,j, y,” = 7~” (tk)) 

(2.1) 

Y (0 can 

(2.2) 

We assume that the necessary conditions for the existence of a slipping state are fulfilled, 

i. e. y,’ < 0, yk” < 0, Y > 0 Cl]. 
The equality y (tk+l) = 0 holds at the instant t~+~, Therefore, for determining the 

interval ok = tk+l - tk between two successive collisions we have, from formula 
(2.2). the following relation: 

- Ry,’ + ‘/2tkyC” + 'letkaY = 0 (2.3) 

where Tk is the smallest positive root of Eq. (2.3). i.e. 

3Y,” 
zk=-- 1 - + R,i,)“‘] , yk a,=-4Y- 

(Y,“P 
(2.4) 

When the sufficient existence conditions for the slipping state [I] are fulfilled, and, in 
particular, the inequality 5(;;1) <%I!& 

the quantity 12/a Rak 1 < 1 and the right-hand side of equality (2.4) can be repre- 
sented by an absdlutely convergent series in positive integral powers of the product Rak 

(2.5) 

In accordance with (2.2). for the determination of the quantities y )r’ and y,” we have, 
from (2.5), the following relations 

?jktl - R?j,’ [ 1 - ‘/&I, - “18 (&k)l - . . .I 

(2.6) 

!!;+I = Yk” [ 1 - 1/2Ra, - 1/12 (Ra,)2 - . . . ] 

using expressions (,2.5), (2.6) as iteration transformations. we express zk in terms of the 
quantities y,‘, y,“. As a result we obtain 

2 +$ + R”) $ + [ 7 liz;; + 2R”’ + 

1 _ Rk-’ 

1 --R 
+ Rk-’ - RPk-1) ] q + . . _) 
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Summing the sequence (Q) (k = 0, 1,2, . ..). we obtain total duration of the interval, 
corresponding to the infinitely colliding process. in the form of series 

a (2.7) 

We now proceed to obtain the dependency of the quantity z, on the duration h. 

According to (2.5) we have 

TO = _ “;$J” [j + 2 Gj (an - I)! 
6” (n - I)! (n f I)! 

U+%)“l @*8) 
n=l 

Passing to the limit in expression (2. I) as k -+ 00 leads, in the boundary case of ter- 

mination of the slipping state on the exit manifold, to the equation 

?Ja” + hY = 0 (2.9) 

Introducing the dime~ionless parameter 
A”* 

we obtain from (2.7) - (2.10) the following system of equations: 

(2.10) 

(2.11) 

for determining the duration factor 8 of the slipping state. From (2.11) it follows 
immediately that @ depends only on the velocity recovery factor R. The accuracy 

of computation of factor 0 and of the quantity 

6 depends on the number of terms taken into 

account in series (2.5) and, respectively, on the 

number of terms in series (2.11). We note that 

I the parameter 6 depends weakly on R as R 
varies in the interval (0, I] the zeroth 6, and 

the first 6, approximations of the parameter 6 
remain constant (6, = 2, 6, = 4.5&S), 
f.46/1,(6z<1.4448 (sic)(*), 1.38ti < 
6, g 1.414. In the Particular case 9” (t) = 

const , it follows from (2.7), (2.8) that the fac- 
tor @ coincides with its own zeroth approxi- 

Fig. 1 

R 
mation 0, := 1 - R, Various approximations 

(-$n of factor c_t) are shown in Fig.1. 
As direct calculations have shown, the third 

*) Editor’s Note. This is an obvious misprint in the Russian original p. 845. There 

is no way to correct it. 
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approximation 8, turns out to be completely sufficient for practical purposes, i.e. only 

the first four terms in series (2.11) need be taken into account. In this case, to describe 
the duration factor 8 of the slipping stateit is appropriate to use an ihterpolating para- 
bolic function of the form 

8(R) = (1 - R) (i-0.4 R) (2.12) 

As R varies over the interval 0 < R < 0,6 , most important in practice, the discre- 
pancy between the values of factor 8 determined from relations (2.11) and (2.12) does 

not exceed 2.5%. 

3. E x1 mple~. 1. From the equations for the collisionless motionsofasimplest two- 

mass system with fwo colliding pairs [9]: y” = -sin I, 1 y ( < d, for the coLIiding in- 

teractions : y ‘+ = --Rye-, 1 y 1 = d, for the state of the kinematic constraint: y - $ d 

(y = --d), sin t > 0 , and for the conditions (1.8) of termination of this motion, fol- 
lows cp (To, y,‘, I,) E sin (to + Q) - sin t0 - TO (cos t, + Ry,‘) = 0 

m (h, 1,) E h $ t, - JT = 0 (3.ij 

With due regard to (1.6) the equation for the boundary rB- of region Il,-, located on 
the surface y - -d, as follows from relations (3. l), has the form 

sin [lo + 8 (n - to)1 - sin t, - 8 (n - to) (co9 t, + Ry,‘) == 0 (3.2) 

Figure 2 shows the results of the computation of boundary (3.2) for individual values 
Jf factor R. The dotted lines depict the refined boundaries of region lI,-. obtained by 

iterating the inverse point mappings [2]. From a comparison it follows that even the 

first approximation has a scarcelynoticeable discrepancy with the refined solution only 
in the vicinity of the values, largest in modulus, of the pre-collision velocities. An ana- 

logous region II,+ is located on the surface y = -1-d. 

In accordance with the general approach presented in Sect.1, from the condition that 
the first point of intersection with surface y = fd of the phase trajectory passing through 
the the exit point MS- (d, 0, 3) from region II,- lies on the boundary (3.2). we have the 
boundary C, of the existence region of the elementary periodic motions with one seg- 
ment of slipping state as the half-period in the following parametric form: 

ain (Rli (1.4 - O.~R)] +A (1 - 1.4R -i. 0.4RZ) [(I + R) co9 h f RI - sin k = 0 
2d = n - h + sin h, 1 11 < .? (3.3) 

Direct computations showed that the discrepancy between the locations of boundary 

c,, constructed by the iterative procedure 121 and by relations (3.3). does not exceed 2%. 
2. The motions of a one-mass model of a vibrating striker are des- 

cribed by the equations [3. 101 

g” = sin t - ha (y + d), y > 0; y’+ -= ---tty’-, y = 0 (3.4) 

An analysis of the point mappings, generated by relations (3.4). of surface I1 into itself 
leads to the following dependency: 

cp (T01 Yo 7 I,,) E (a cos T - Ry,‘) sin 2h7, + 2h [d - a sin lo + 
(a sin T - d) (sin*lir, + cos IT,)] : 0 (3.5) 
a .= (11* - 1)-l, T = f. i- To 

From the equations y = 0, sin t - I’d < 0 of the kinematic constraint between the 
mass and the barrier we obtain the expression 



798 Iu.S.Pedosenko and M.I.Pelgln 

CD (h, to) E h -; t, - arcsin (ii%) (<Lb) 

which, together with conditions (2.12). (3.5) determines in the first approximation the 

boundary r,. Examples of the computation of rs by the equations obtained are presen- 
ted in Fig. 3. The curves 1 - 4 correspond to the following parameter values: 

Curve 1 - )I := 0.3, d = -5.0, I{ = 0.3, 

II 2 - h = 0.3, d = 0.5, R = O./i, 

II 3 - ?, = 0.5, d : 0, If U.3, 

.1 4 _ h =z. u.y, d = 0.1, l< := 0.3. 

For comparison the dotted lines show the refined boundaries of region C’, obtained by 
the iterative procedure p]. The insignificant discrepancy between the results attests 
not only to the admissibility of the idealization adopted but also to the sufficiency of 
considering here the first approximation in a comparatively large neighborhood of the 

point M, (0, U, arcsin (h2d)). 

Let us obtain the equations of boundary i, of the existence region of the simplest 

periodic motions with a segment of slipping state in the space of the parameters 11, d, I{. 

For this we write down the condition for the 

first point of intersection with surface TI of 

the phase trajectory of collisionless motions, 

[I 

1 

2 

3 

- +I 

Fig. 2 Fig. 3 

issuing from the exit point M, , to lie on the curve rs : 

d [I f a cos h (to t,,)] -- a sin t, + uh-1 Cost, sin h (to - fR) ~7. 0 

a-$/; - hd sin h (to -- IS) f COS I, COY h. (1, - ts) - COS to 7 0 (3.5) 

It is obvious that in the system of relations (2.12). (3.5) - (3.7) the variables z,,$ h, y, 

easily lend themselves to elimination, and the boundary C, can be represented in para- 
metric form by two transcendental equations. 

3. We consider the slipping state problem under an interaction with 

a fixed plane of a two-mass system with an elastic constraint between the elements. 
A particular case of this autonomous system, when up to the instant of the first collision 
the masses have like velocities and move as a unit with undeformed elastic constraint, 
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was investigated in [5] by the method proposed in [4]. The system’s motions are descri- 
bed by the equations 

“iy” + c (y - 5) = 0, nr,z” + c (z - y) = u, Y>fJ (9.8) 
Y 

*+ _I -Rye-, y=o 

while in the case of a kinematic constraint between mass ml and the fixed barrier, the 

motions take place in accord with the law 
y = 0, m,x” + cz = z<o (3.9) 

From the point mappings, generated by Eqs. (3.8) of surface II into itself, we have 

cp (TV, zo, zo’, yo’)~(xo’ $ pmlRyo’) ~~ - (cos AT, - 1) x0 - 1-1 (zo’ + Ry,‘) sin hr, = 0 

u+ a=-= c (ml A 0~1) 
11. p ’ 02 = 

mm 
(3.10) 

Using the idealization of the slipping state as a motion according to law (3.9), we obtain 

the following equation for seeking h: 

Q, (h, 10, zo’) f ozo + 20’ tg oh L-z 0 (3.11) 

The system of relations (3. lo), (3.11) (2.12) determine in the first approximation the 
boundary Is. For the particular case z. = 0 , considered in [5J. from (3.11) we have 
h = n/o and the equations for curve Is in the form 

50* (v - sin v) - y,‘R (VP-’ + sin V) = 0 (3.12) 

v __ x (i - R) (i - 0.4R) (i + /.L)“’ = 0, v = ~TO 

In the space of parameters R, u the location of boundary C, depends only on the 
velocity ratio k = zo’lye’. In Fig.4 the solid lines depict the boundaries of the existence 

regions of the slipping state, constructed by means of (3.12). Under specific initial con- 

ditions z. = 0 the quantity h is essentially large, therefore, the results obtained are 
subject to refinement. 

We consider the second approximation. In this case, as the origin of the slipping state 

we take the point M, (zi, Y = 0, 21’. Y’) corresponding to the second collision of the 
system with the barrier. We obtain the coordinates of point Ml by integrating (3.8) with 

the initial conditions z (1,) = zor y (to) = 0, z’ (to) = zo’, y’ (to) = -Rye’, 

21 = (Xg. - PRY,‘) TO + =ov 2,’ = (1 + p)” (~0’ - pRy,‘+ pa) (3.13) 

Y; = (1 + P)-’ (zo’ - pRy,’ - a), CJ = (zo’ -I- Ry,‘) cos lick - 12, sin kr, 

The time interval r~ = 1, - tl and the duration h are determined from the equations 

(21’ - pRyI’) TV - zI (cos IT, - 1) - 1-l (q’ $ Ry,‘) sin 3L~i = 0 

021 + Zl’ tg oh == 0 (3.14) 

analogous, respectively, to conditions (3.10) and (3.11). As a result of manipulations, 
from relations (3. lo), (3.11). (3.14) we obtain three transcendental equations 

[i,, (k + R) (1 + R) cos IT, + (k - Q) (1 - INI ‘h - (1 + P) 6 - PI @OS ATI -_ 

_ 1) 7o - k-1 [(k + R) (p - R) cos ?a0 + (k - pR) (I + RI1 sin hr, = 0 

h (k - pR) ~~ - (k + R) sin li 7. = 0 (3.151 

t,ro!L= 
p(k -6 R)cosh+ k--If 

OTo (1 + p) (+ - k) 
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which, together with (2.12). determine the refined boundaries C, (k). The boundary 
curves of the slipping state regions, computed by formulas (3.15), (2,12), are shown in 
Fig.4 by the dotted lines. Here, in addition, we have reproduced the boundary C, for 

k = f , obtained in [53, by a dash-dotted line. A certain difference in the locations of 
the boundary lines is explained by the fact that the analysis has been restricted to the 

second approximation, and also by the singular way that the method of 141 was applied 

in 153. 

P-; 

6 

Fig. 4 Fig. 5 

4. In conclusion we consider a slipping state in a nonautonomous 

system with two degrees of freedom, being, in particular, a model of a shock absorber. 

In the resonant case the dimensionless equations of motion have the form p J 

5” _t- I _- sin t, g” = -x’., I y I < d 

Y *+ = -Hj/“, I” =:I’-- +l (I + p)” (1 -t It)!/‘-. 1 yj .r- d (3.16; 

The equations of the point mappings of the surfaces y -= .:-d into themselves, generated 

by relations (3.16). allow us to obtain the function CF {r,, it’,,, zO’, yn’, 1,) in the form 

Z!3 (1 -- cos Tn) -. Tn Ix,,’ -L. v2 (p - 1,) y,,’ . ‘I2 ctts (f* + To\ 1 - ;x; 

... l/y cos to] sir1 Tg =.- 0. v-2 =z I :- 11 

Integrating, with the initial conditions z (1,) --- zO, z’ (lo) L= 2~’ i- 
of motion of the system under a kinematic constraint between the 

pv’ (I -i_ 8) yo’ j- 

(3. Ii) 

p~‘~~’ the equations 
colliding elements 

0 t PI x” = sin t - z; y = -t-d, y” > 0 (y = -d, y” < 0) 

we obtain the following condition for determining the duration h : 

Y (sill f0 $ +Q,‘) cosvh + (cos lo + pro’ -+ pWy,‘) sin vh + v-1 sin (to + h) = 0 (3.18) 

Relations (3. l?), (3. X8), (2.12). obviously de rermine in closed form on the surfaces 
y=+a, ?J==-If the boundaries I’,* and rs- , respectively, of the slipping motion 

regions I’&+ and II,-. 
To delineate, in the parameter space, the existence regions of periodic motions with 

a slipping state segment, it is necessary to examine the point transformation of surface 

I&- into surface II,-. The coordinates of the fixed points corresponding to a periodic 
motion with an absolutely inelastic collision of the system’s elements are found in the 
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usual manner [7]. Here one of the fixed points always lies on the exit manifold M,+ 

(M,-) of the region II,+ (II,-). The coordinates of the other fixed point, in the case of 
simplest periodic motions with one slipping state segment as a half-period, are determ- 

ined by the system of equations 

20 tsin (t, + h) + (n - h) (20’ + Yo’) + U = 0 

20 co9 h + - i sin (to + h) + 
( 

zo.++-coat0 sinh++(n- 
) 

( 

1 
- to) coa (to + h) - 20 + F sin to 

) 
co9 v h - [ZO’ + pv (zo’ + Yo3 + 

+ +- cos to 
I 

sin vh = 0 (3.19) 

(‘/@in to - 20) sin h + ~0’ [cos h + v* (co9 vh - sin vh) + i] - ‘/I (II - lo) sin (to + h) = 0 

v (pzo + sin lo)tg vh + [cos (to + h) - pz~‘] set vh - pz0’ - pWy0 - COS to = 0 

Relations (3.17) - (3.19), together with (2.12). impose a constraint on the parameters 
P, d, R of the system being considered, defining the existence boundary of the periodic 
motion with a slipping state segment. Since the coordinates zO, zg’, ~0. enter linearly 

in (3.19), the boundary surface C, can be expressed in parametric form by three trans- 

cendental equations. Figure 5 shows the results of computation of sections of the surface 

C, by planes p = conat on the interval 0.2 < R < 0.6. 

BIBLIOGRAPHY 

1. Feigin, M. I., Slippage in dynamic systems with collision interactions. PMM 

Vol.31, W3, 1967. 
2. Feigin, M. I., Peculiarities of dynamics of systems with collision interactions, 

connected with the existence ofslippage motions. In: Mechanics of Machines, 

Moscow, “Nauka”, Issues 33-34, 1972. 
3. Fedocenko. 1u.S. and Feigin, M.I., Periodic motions of a vibrating 

striker including a slippage region. PMM Vol. 35, No5, 1971. 
4. Nagaev. R. F., General problem of quasi-plastic impact. Izv. Akad.Nauk 

SSSR, MTT, W3, 1971. 

5. Nagaev, R. F. and Iakimova, K.S., On the shock interaction of a two- 

mass elastic system with a fixed plane. Izv. Akad. Nauk SSSR,MTT. Np6.1971. 

6. Ksendzov,A.A. and Nagaev,R.F., Infinitely colliding periodic modes 
in the problem of vibrating conveyance with tossing. Izv. Akad. Nauk SSSR, 

MTT, W5, 1971. 
7. Bespalova, L.V., Neimark, Iu.1. and Feigin, M.I., Dynamic 

systems with shock interactions and the theory of nonlinear oscillations. Inzh. 

Zh., MTT, Nnl, 1966. 
8. Bautin, N. N., On approximations and the coarseness of the parameter space of 

a dynamic system. PMM Vol. 33. W6, 1969. 
9. Brunshtein, R, E, and K o b r i n s k i i , A. E., Periodic motions of a system con- 

taining a bead in a cavity. Izv. Akad. Nauk SSSR, OTN, Mekhanika i Mashino- 
stroenie, Npl, 1959. 

10. Bespalova, L. V., On the theory of vibrating impact mechanism. Izv. Akad. 
Nauk SSSR, OTN, W5, 1957. 

Translated by N. H. C. 


